Effects of the Renin Angiotensin System on Insulin Signaling

The Big Diabetes Lie

Diabetes Holistic Treatment

Get Instant Access

The effects of RAS inhibition on insulin action have been attributed to changes in both the inhibition of Ang II/ ATI receptor signaling and enhancement of bradykinin/B2 receptor action. ACE, also called kininase II, degrades bradykinin 1-9 and thereby reduces bradykinin B2 receptor activation (Fig. 2). Several reports have shown that bradykinin B2-receptor antagonism blocks the decreases in insulin resistance and enhanced glucose uptake associated with ACE inhibition (148,149,157) and is mimicked by chronic bradykinin administration (158). Moreover, bradykinin B2 receptor deficient mice are insulin-resistant (159). Although the mechanisms responsible for the amelioration of insulin resistance by bradykinin are not fully understood, bradykinin has been shown to enhance insulin-stimulated insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and its subsequent association with Phosphatidylinositol 3'-kinase (PI3K) in skeletal muscle and liver (160,161), possibly by inhibiting insulin receptor dephosphorylation (162). Bradykinin has also been shown to increase GLUT-4 translocation to the plasma membrane, which may contribute to insulin-independent glucose uptake in the heart and skeletal muscle (163,164).

Although bradykinin appears to contribute to the effects of ACE inhibition on insulin sensitivity, there is also considerable evidence that Ang II can inhibit insulin signaling and induce insulin resistance. Infusion of Ang II during a hyperinsulinemic euglycemic clamp in anesthetized dogs results in increases in both plasma and interstitial insulin without a concomitant increase in glucose utilization, suggesting that Ang II induced insulin resistance at the cellular level (165). Increased Ang II production induced by transgenic over expression of renin in TG(mREN2)27 rats induces insulin-resistance compared with nontransgenic control rats (166). Infusion of Ang II in rats inhibits insulin-stimulated PI3K activation in the heart by reducing insulin-stimulated PI3K activity associated with IRS-1 without significantly impairing IRS-1 tyrosine phosphorylation or IRS-1/p85 P13K docking (132).

Angiotensin Ati Signalization

Fig. 2. Modulation of insulin signaling by the renin-angiotensin system. Angiotensin-converting enzyme (ACE) catalyses the conversion of Ang I to Ang II and degrades bradykinin 1-9 (BK2 receptor agonist). The Ang II/AT1 pathway stimulates serine phosphorylation of IRS-1, which reducing its tyrosine phosphorylation by activated insulin receptor thereby inhibiting insulin signaling. The Bradykinin BK2 receptor pathway increases insulin receptor phosphorylation resulting in enhanced insulin action. Both activated insulin receptor and BK2 receptor increase glucose transport and NO synthesis. JNK, Jun N-terminal kinase; IRS-1, insulin receptor sub-strate-1; PI3K, Phosphatidylinositol 3'-kinase; P-Ser, phosphoserine.

Fig. 2. Modulation of insulin signaling by the renin-angiotensin system. Angiotensin-converting enzyme (ACE) catalyses the conversion of Ang I to Ang II and degrades bradykinin 1-9 (BK2 receptor agonist). The Ang II/AT1 pathway stimulates serine phosphorylation of IRS-1, which reducing its tyrosine phosphorylation by activated insulin receptor thereby inhibiting insulin signaling. The Bradykinin BK2 receptor pathway increases insulin receptor phosphorylation resulting in enhanced insulin action. Both activated insulin receptor and BK2 receptor increase glucose transport and NO synthesis. JNK, Jun N-terminal kinase; IRS-1, insulin receptor sub-strate-1; PI3K, Phosphatidylinositol 3'-kinase; P-Ser, phosphoserine.

Our laboratory and others have shown that Ang II inhibits insulin stimulation of PI3K in both vascular cells and tissues. In cultured VSMCs, Ang II inhibits insulin-stimulated IRS-1 tyrosine phosphorylation, and its subsequent docking with the regulatory p85 subunit of PI3K (131). Because Ang II did not alter insulin receptor autophosphorylation, the inhibitory effects of Ang II appear to occur subsequent to insulin receptor activation. Ang II-induced serine phosphorylation of IRS-1 correlated with impaired IRS-1 binding to activated insulin receptor, suggesting that Ang II-induced serine phosphorylation of IRS-1 prevents its ability to bind and become tyrosine phosphorylated by the insulin receptor (Fig. 2). Recent studies have shown that Ang II, via the AT1 receptor, increases IRS-1 phosphorylation at Ser312 and Ser616 via Jun NH(2)-terminal kinase (JNK) and ERK1/2, respectively, in human umbilical vein endothelial cells (167). Additionally, activation of JNK has been shown to stimulate IRS-1 phosphorylation at Ser307 and inhibit insulin-stimulated tyrosine phosphorylation of IRS-1 (168). These reports have begun to provide a biochemical basis for Ang II/insulin "crosstalk" at the signal transduc-tion level in vascular cells. Although chronic AT1 antagonism has been associated with a 20% increase in GLUT-4 expression and increased glucose uptake in skeletal muscle (151,152), the mechanisms that mediate these effects of AT1 receptor antagonists on insulin action in skeletal muscle have not yet been elucidated.

summary and conclusions

The RAS has emerged as a network of angiotensin peptides and receptors, whose production and activities are regulated at multiple levels. A growing number of clinical trials and experimental studies using diabetic animal models have shown that both ACE1 and the ATI receptor contribute to cardiovascular dysfunctions and disease in diabetes. The cardiovascular effects of the RAS are results of a combination of its systemic and local/intravascular actions. The systemic actions of the RAS include BP control, and effects on insulin sensitivity, metabolic control, and circulating CVD risk factors, such as PAI-1. The intravascular RAS exerts additional effects on vascular remodeling, inflammation, oxidation, thrombosis, fibrosis, and endothelial functions including permeability and vasorelaxation. Although the RAS has emerged as a leading therapeutic target for diabetic microvascular and cardiovascular complications, additional factors associated with insulin resistance, metabolic control, and inflammation also play major roles in the excessive cardiovascular risk associated with diabetes. Further understanding of the interactions between RAS and diabetic vascular complications will provide new insight into the role of RAS inhibition in the treatment and management of CVD in diabetes.


This work was supported in part by National Institutes of Health grant DK 48358.


1. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329:1456-1462.

2. Laffel L, McGill JB, Gan DJ. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patints with microalbuminuria. North Americn Microalbuminuria Study Group. Am J Med 1995;99:497-504.

3. Captopril reduces the risk of nephropathy in IDDM patients with microalbuminuria. The Microalbuminuria Captopril Study Group. Diabetologia 1996;39:587-593.

4. Mathiesen ER, Hommel E, Hansen HP, Smidt UM, Parving HH. Randomised controlled trial of long term efficacy of captopril on preservation of kidney function in normotensive patients with insulin dependent diabetes and microalbuminuria. BMJ 1999;319:24-25.

5. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000;355(9200):253-259.

6. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group [see comments]. Lancet 1997;349:1787-1792.

7. Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med 1998;128:982-988.

8. Chaturvedi N, Sjolle AK, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. Lancet 1998;351:28-31.

9. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group [published erratum appears in BMJ 1999;318(7175):29]. BMJ 1998;317:703-713.

10. Zuanetti G, Latini R, Maggioni AP, Franzosi MG, Santoro L, Tognoni G. Effect of the ACE inhibitor Lisinopril on mortality in diabetic patients with acute myocardial infarction data from the GISSI-3 study. Circulation 1997;96:4239-4245.

11. Gustafsson I, Torp-Pedersen C, Kober L, Gustafsson F, Hildebrandt P. Effect of the angiotensin-con-verting enzyme inhibitor trandolapril on mortality and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. Trace Study Group. J Am Coll Cardiol 1999;34:83-89.

12. Tatti P, Pahor M, Byington RP, et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM [see comments]. Diabetes Care 1998;21:597-603.

13. Brenner BM, Cooper ME, De Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861-869.

14. Black HR, Graff A, Shute D, et al. Valsartan, a new angiotensin II antagonist for the treatment of essential hypertension: efficacy, tolerability and safety compared to an angiotensin-converting enzyme inhibitor, lisinopril. J Hum Hypertens 1997;11:483-489.

15. McKelvie RS, Yusuf S, Pericak D, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators [see comments]. Circulation 1999;100:1056-1064.

16. Kim S, Wanibuchi H, Hamaguchi A, Miura K, Yamanaka S, Iwao H. Angiotensin blockade improves cardiac and renal complications of type II diabetic rats. Hypertension 1997;30:1054-1061.

17. Hope S, Brecher P, Chobanian AV. Comparison of the effects of AT1 receptor blockade and angiotensin converting enzyme inhibition on atherosclerosis. Am J Hypertens 1999;12:28-34.

18. Horio N, Clermont AC, Abiko A, et al. Angiotensin AT(1) receptor antagonism normalizes retinal blood flow and acetylcholine-induced vasodilatation in normotensive diabetic rats. Diabetologia 2004;47:113-123.

19. Hu WY, Fukuda N, Ikeda Y, et al. Human-derived vascular smooth muscle cells produce angiotensin II by changing to the synthetic phenotype. J Cell Physiol 2003;196:284-292.

20. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II- forming enzyme in the human heart [published erratum appears in J Biol Chem 1991;266(18):12114]. J Biol Chem 1990;265:22,348-22,357.

21. Owen CA, Campbell EJ. Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition. J Immunol 1998;160:1436-1443.

22. Liao Y, Husain A. The chymase-angiotensin system in humans: biochemistry, molecular biology and potential role in cardiovascular diseases. Can J Cardiol 1995;11(Suppl F):13F-19F.

23. Ardaillou R. Angiotensin II receptors. JAm.Soc.Nephrol 1999;10(Suppl 11):S30-S39.

24. Zisman LS, Abraham WT, Meixell GE, et al. Angiotensin II Formation in the Intact Human Heart. JClin.Invest 1995;96:1490-1498.

25. Dzau VJ. Mechanism of protective effects of ACE inhibition on coronary artery disease. Eur Heart J 1998;19(Suppl J):J2-J6.

26. Takai S, Shiota N, Kobayashi S, Matsumura E, Miyazaki M. Induction of chymase that forms angiotensin

II in the monkey atherosclerotic aorta. FEBS Lett 1997;412:86-90.

27. Song K, Shiota N, Takai S, et al. Induction of angiotensin converting enzyme and angiotensin II receptors in the atherosclerotic aorta of high-cholesterol fed Cynomolgus monkeys. Atherosclerosis 1998;138:171-182.

28. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypep-tidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000;87:E1-E9.

29. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002;417:822-828.

30. Healy DP, Song L. Kidney aminopeptidase A and hypertension, part I: spontaneously hypertensive rats. Hypertension 1999;33:740-745.

31. Chen HC, Bouchie JL, Perez AS, et al. Role of the angiotensin AT(1) receptor in rat aortic and cardiac PAI-1 gene expression. Arterioscler Thromb Vasc Biol 2000;20:2297-2302.

32. Reaux A, Fournie-Zaluski MC, David C, et al. Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA 1999;96:13,415-13,420.

33. Patel JM, Martens JR, Li YD, Gelband CH, Raizada MK, Block ER. Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. Am J Physiol 1998;275:L1061-L1068.

34. Coleman JK, Krebs LT, Hamilton TA, et al. Autoradiographic identification ofkidney angiotensin IV binding sites and angiotensin IV-induced renal cortical blood flow changes in rats. Peptides 1998;19:269-277.

35. Albiston AL, McDowall SG, Matsacos D, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 2001;276:48,623-48,626.

36. Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL. Chronic Production of Angio-tensin IV in the Brain Leads to Hypertension that Is Reversible with an Angiotensin II AT1 Receptor Antagonist. Circ Res 2004;94:1451-1457.

37. Tan F, Morris PW, Skidgel RA, Erdos EG. Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families [published erratum appears in J Biol Chem 1993;268(34):26032]. J Biol Chem 1993;268:16,631-16,638.

38. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas Proc Natl Acad Sci USA 2003;100:8258-8263.

39. Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA. Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. Hypertension 1996;28:104-108.

40. Benter IF, Ferrario CM, Morris M, Diz DI. Antihypertensive actions of angiotensin-(1-7) in spontaneously hypertensive rats. Am J Physiol 1995;269:H313-H319.

41. Horiuchi M, Akishita M, Dzau VJ. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 1999;33:613-621.

42. Unger T. Neurohormonal modulation in cardiovascular disease. Am Heart J 2000;139(Pt 2):S2-S8.

43. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 1998;95:15,496-15,501.

44. Tsuchida S, Matsusaka T, Chen X, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 1998;101:755-760.

45. Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 2004;6:499-506.

46. Al-Merani SA, Brooks DP, Chapman BJ, Munday KA. The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. J Physiol (Lond) 1978;278:471-90.

47. Chapman BJ, Brooks DP, Munday KA. Half-life of angiotensin II in the conscious and barbiturate-anaesthetized rat. Br J Anaesth 1980;52:389-393.

48. Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996;94:2756-2767.

49. Campbell DJ, Kelly DJ, Wilkinson-Berka JL, Cooper ME, Skinner SL. Increased bradykinin and "normal" angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney Int 1999;56:211-221.

50. Vallon V, Wead LM, Blantz RC. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction. J Am Soc Nephrol 1995;5:1761-1767.

51. Nakayama T, Izumi Y, Soma M, Kanmatsuse K. Adrenal renin-angiotensin-aldosterone system in streptozotocin-diabetic rats. Horm Metab Res 1998;30:12-15.

52. Cronin CC, Barry D, Crowley B, Ferriss JB. Reduced plasma aldosterone concentrations in randomly selected patients with insulin-dependent diabetes mellitus. Diabet Med 1995;12:809-815.

53. Price DA, Porter LE, Gordon M, et al. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol 1999;10:2382-2391.

54. Anderson S, Jung FF, Inglefinger J. Renal renin-angiotensin system in diabetes: functional, immuno-histochemical, and molecular biological correlations. Am.JPhysiol 1993;265:F477-F486.

55. Brown L, Wall D, Marchant C, Sernia C. Tissue-specific changes in angiotensin II receptors in streptozotocin- diabetic rats. J Endocrinol 1997;154:355-362.

56. Sechi LA, Griffin CA, Schambelan M. The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 1994;43:1180-1184.

57. Erman A, van Dyk DJ, Chen-Gal B, Giler ID, Rosenfeld JB, Boner G. Angiotensin converting enzyme activity in the serum, lung and kidney of diabetic rats. Eur J Clin Invest 1993;23:615-620.

58. Correa-Rotter R, Hostetter TH, Rosenberg ME. Renin and angiotensinogen gene expression in experimental diabetes mellitus. Kidney Int 1992;41:796-804.

59. Cassis LA. Downregulation of the renin-angiotensin system in streptozotocin- diabetic rats. Amer Physiol Soc 1992;262:E105-E109.

60. Jost-Vu E, Horton R, Antonipillai I. Altered regulation of renin secretion by insulinlike growth factors and angiotensin II in diabetic rats. Diabetes 1992;41:1100-1105.

61. Harker CT, O'Donnell MP, Kasiske BL, Keane WF, Katz SA. The renin-angiotensin system in the type II diabetic obese Zucker rat. J Am Soc Nephrol 1993;4:1354-1361.

62. Schunkert H, Ingelfinger JR, Jacob H, Jackson B, Bouyounes B, Dzau VJ. Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol 1992;263:E863-E869.

63. Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia modulates angiotensinogen gene expression. Am J Physiol Regul Integr Comp Physiol 2001;281:R795-R802.

64. Malhotra A, Kang BP, Cheung S, Opawumi D, Meggs LG. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 2001;50:1918-1926.

65. Sodhi CP, Kanwar YS, Sahai A. Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol 2003;284:H846-H852.

66. Drury PL, Smith GM, Ferriss JB. Increased vasopressor responsiveness to angiotensin II in type 1 (insulin-dependent) diabetic patients without complications. Diabetologia 1984;27:174-179.

67. Kennefick TM, Oyama TT, Thompson MM, Vora JP, Anderson S. Enhanced renal sensitivity to angiotensin actions in diabetes mellitus in the rat. Am J Physiol 1996;271:F595-F602.

68. Trevisan R, Bruttomesso D, Vedovato M, et al. Enhanced responsiveness of blood pressure to sodium intake and to angiotensin II is associated with insulin resistance in IDDM patients with microalbuminuria. Diabetes 1998;47:1347-1353.

69. Christlieb AR, Janka HU, Kraus B, et al. Vascular reactivity to angiotensin II and to norepinephrine in diabetic subjects. Diabetes 1976;25:268-274.

70. Natarajan R, Scott S, Bai W, Yerneni KK, Nadler J. Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. Hypertension 1999;33:378-384.

71. Amiri F, Venema VJ, Wang X, Ju H, Venema RC, Marrero MB. Hyperglycemia enhances angiotensin II-induced janus-activated kinase/STAT signaling in vascular smooth muscle cells. J Biol Chem 1999;274:32382-32386.

72. Candido R, Allen TJ, Lassila M, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 2004;109:1536-1542.

73. Shaw S, Wang X, Redd H, Alexander GD, Isales CM, Marrero MB. High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J Biol Chem 2003;278:30634-30641.

74. Bouchie JL, Hansen H, Feener EP. Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Role of cGMP in the regulation of the plasminogen system. Arterioscler Thromb Vasc Biol 1998;18:1771-1779.

75. Yoshizumi M, Tsuji H, Nishimura H, et al. Atrial natriuretic peptide inhibits the expression of tissue factor and plasminogen activator inhibitor 1 induced by angiotensin II in cultured rat aortic endothelial cells. Thromb Haemost 1998;79:631-634.

76. Dubey RK, Jackson EK, Luscher TF. Nitric Oxide Inhibits Angiotensin II-induced Migration of Rat Aortic Smooth Muscle Cell. J Clin Invest 1995;96:141-149.

77. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 1996;79:748-756.

78. Takizawa T, Gu M, Chobanian AV, Brecher P. Effect of nitric oxide on DNA replication induced by angiotensin II in rat cardiac fibroblasts. Hypertension 1997;30:1035-1040.

79. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-depen-dent vasodilation in patients with insulin- dependent diabetes mellitus [see comments]. Circulation 1993;88:2510-2516.

80. Williams SB, Cusco JA, Roddy M-A, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996;27:567-574.

81. Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001;37:1047-1052.

82. Kon V, Jabs K. Angiotensin in atherosclerosis. Curr Opin Nephrol.Hypertens 2004;13:291-297.

83. Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol 2002;13:505-512.

84. Park L, Raman KG, Lee KJ, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat.Med 1998;4:1025-1031.

85. Candido R, Jandeleit-Dahm KA, Cao Z, et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation 2002;106:246-253.

86. Hayaishi-Okano R, Yamasaki Y, Katakami N, et al. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with type 1 diabetes. Diabetes Care 2002;25:1432-1438.

87. Paul A, Ko KW, Li L, et al. C-Reactive Protein Accelerates the Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice. Circulation 2004;109:647-655.

88. Hayek T, Pavlotzky E, Hamoud S, et al. Tissue angiotensin-converting-enzyme (ACE) deficiency leads to a reduction in oxidative stress and in atherosclerosis: studies in ACE-knockout mice type 2. Arterioscler Thromb Vasc Biol 2003;23:2090-2096.

89. Hayek T, Attias J, Coleman R, et al. The angiotensin-converting enzyme inhibitor, fosinopril, and the angiotensin II receptor antagonist, losartan, inhibit LDL oxidation and attenuate atherosclerosis independent of lowering blood pressure in apolipoprotein E deficient mice. Cardiovasc Res 1999;44:579-587.

90. Domanski MJ, Exner DV, Borkowf CB, Geller NL, Rosenberg Y, Pfeffer MA. Effect of angiotensin converting enzyme inhibition on sudden cardiac death in patients following acute myocardial infarction. A meta-analysis of randomized clinical trials. J Am Coll Cardiol 1999;33:598-604.

91. Garg R, Yusuf S, for the Collaborative Group on ACE Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995;273:1450-1456.

92. Diabetes mellitus: a major risk factor for cardiovascular disease. A joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association. [editorial; comment]. Circulation 1999;100:1132-1133.

93. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group [see comments]. BMJ 1998;317:713-720.

94. Estacio RO, Schrier RW. Antihypertensive therapy in type 2 diabetes: implications of the appropriate blood pressure control in diabetes (ABCD) trial. Am J Cardiol 1998;82:9R-14R.

95. Estacio RO, Jeffers BW, Hiatt WR, Biggerstaff SL, Gifford N, Schrier RW. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension [see comments]. NEngl.JMed 1998;338:645-652.

96. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators [see comments] [published erratum appears in N Engl J Med 2000;342(10):748]. N Engl J Med 2000;342 (3):145-153.

97. Dagenais GR, Yusuf S, Bourassa MG, et al. Effects of ramipril on coronary events in high-risk persons: results of the Heart Outcomes Prevention Evaluation study. Circulation 2001;104:522-526.

98. Lonn E, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 2001;103:919-925.

99. Lindholm LH, Ibsen H, Dahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004-1010.

100. Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 1999;12:205S-213S.

101. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev 1998;78:583-686.

102. Mehler PS, Jeffers BW, Estacio R, Schrier RW. Associations of hypertension and complications in non-insulin-dependent diabetes mellitus. Am J Hypertens 1997;10:152-161.

103. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925-1930.

104. Imanishi M, Yoshioka K, Konishi Y, et al. Glomerular hypertension as one cause of albuminuria in type II diabetic patients. Diabetologia 1999;42:999-1005.

105. Imanishi M, Yoshioka K, Okumura M, Konishi Y, Tanaka S, Fujii S, Kimura G. Mechanism of decreased albuminuria caused by angiotensin converting enzyme inhibitor in early diabetic nephropathy. Kidney Int Suppl 1997;63:S198-S200.

106. Anderson S, Rennke HG, Garcia DL, Brenner BM. Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int 1989;36:526-536.

107. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977-984.

108. Chen KD, Li YS, Kim M, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 1999;274:18393-18400.

109. Hoyer J, Kohler R, Haase W, Distler A. Up-regulation of pressure-activated Ca(2+)-permeable cation channel in intact vascular endothelium of hypertensive rats. Proc Natl Acad Sci USA 1996;93:11253-11258.

110. Hamada K, Takuwa N, Yokoyama K, Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem 1998;273:6334-6340.

111. Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta- 1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 1995;95:1363-1369.

112. Jesmin S, Sakuma I, Hattori Y, Kitabatake A. Role of angiotensin II in altered expression of molecules responsible for coronary matrix remodeling in insulin-resistant diabetic rats. Arterioscler Thromb Vasc Biol 2003;23:2021-2026.

113. Zaman AK, Fujii S, Sawa H, et al. Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation 2001;103:3123-3128.

114. Igarashi M, Hirata A, Yamaguchi H, et al. Candesartan inhibits carotid intimal thickening and ameliorates insulin resistance in balloon-injured diabetic rats. Hypertension 2001;38:1255-1259.

115. Yang BC, Phillips MI, Mohuczy D, et al. Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1998;18:1433-1439.

116. Keidar S, Attias J, Heinrich R, Coleman R, Aviram M. Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 1999;146:249-257.

117. Napoleone E, Di Santo A, Camera M, Tremoli E, Lorenzet R. Angiotensin-converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res 2000;86(2):139-143.

118. Yanagitani Y, Rakugi H, Okamura A, et al. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension 1999;33:335-339.

119. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996;97:2601-2610.

120. Fard A, Tuck CH, Donis JA, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 2000;20(9):2039-2044.

121. Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999;104:447-457.

122. Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation 2000;101:676-681.

123. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996;97:22-28.

124. Zhao G, Zhang X, Smith CJ, et al. Reduced coronary NO production in conscious dogs after the development of alloxan-induced diabetes. Am J Physiol 1999;277:H268-H278.

125. Meininger CJ, Marinos RS, Hatakeyama K, et al. Impaired nitric oxide production in coronary endot-helial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 2000;349(Pt 1):353-356.

126. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 2000;43:1435-1438.

127. O'Driscoll G, Green D, Maiorana A, Stanton K, Colreavy F, Taylor R. Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1999;33:1506-1511.

128. Cheetham C, O'Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes. Clin Sci (Colch) 2001;100:13-17.

129. Arcaro G, Zenere BM, Saggiani F, et al. ACE inhibitors improve endothelial function in type 1 diabetic patients with normal arterial pressure and microalbuminuria. Diabetes Care 1999;22:1536-1542.

130. O'Driscoll G, Green D, Rankin J, Stanton K, Taylor R. Improvement in endothelial function by angiotensin converting enzyme inhibition in insulin-dependent diabetes mellitus. J Clin Invest 1997;100:678-684.

131. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angio-tensin II crosstalk. J Clin Invest 1997;100:2158-2169.

132. Velloso LA, Folli F, Sun XJ, White MF, Saad MJA, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc.Natl.Acad.Sci.USA 1996;93:12,490-12,495.

133. Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ. Coronary microvascular endothelial cell redox state in left ventricular hypertrophy : the role of angiotensin II. Circ Res 2000;86(4):463-469.

134. McFarlane R, McCredie RJ, Bonney MA, Molyneaux L, Zilkens R, Celermajer DS, Yue DK. Angiotensin converting enzyme inhibition and arterial endothelial function in adults with Type 1 diabetes mellitus. Diabet Med 1999;16:62-66.

135. Mullen MJ, Clarkson P, Donald AE, et al. Effect of enalapril on endothelial function in young insulin-dependent diabetic patients: a randomized, double-blind study. J Am Coll Cardiol 1998;31:1330-1335.

136. Torlone E, Britta M, Rambotti AM, Perriello G, Santeusanio F, Brunetti P, Bolli GB. Improved insulin action and glycemic control after long-term angiotensin-converting enzyme inhibition in subjects with arterial hypertension and type II diabetes. Diabetes Care 1993;16:1347-1355.

137. Valensi P, Derobert E, Genthon R, Riou JP. Effect of ramipril on insulin sensitivity in obese patients. Diabetes and Metabolism 1996;22:197-200.

138. Galletti F, Strazzullo P, Capaldo B, et al. Controlled study of the effect of angiotensin converting enzyme inhibition versus calcium-entry blockade on insulin sensitivity in overweight hypertensive patients: Trandolapril Italian Study (TRIS). J Hypertens 1999;17:439-445.

139. Fogari R, Zoppi A, Corradi L, Lazzari P, Mugellini A, Lusardi P. Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertensive patients. Br J Clin Pharmacol 1998;46:467-471.

140. Bonora E, Targher G, Alberiche M, et al. Effect of chronic treatment with lacidipine or lisinopril on intracellular partitioning of glucose metabolism in type 2 diabetes mellitus. J Clin Endocrinol Metab 1999;84:1544-1550.

141. Tillmann HC, Walker RJ, Lewis-Barned NJ, Edwards EA, Robertson MC. A long-term comparison between enalapril and captopril on insulin sensitivity in normotensive non-insulin dependent diabetic volunteers. J Clin Pharm Ther 1997;22:273-278.

142. New JP, Bilous RW, Walker M. Insulin sensitivity in hypertensive Type 2 diabetic patients after 1 and 19 days' treatment with trandolapril [In Process Citation]. Diabet Med 2000;17 (2):134-140.

143. Grassi G, Seravalle G, Dell'Oro R, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens 2003;21:1761-1769.

144. Nielsen S, Hove KY, Dollerup J, et al. Losartan modifies glomerular hyperfiltration and insulin sensitivity in type 1 diabetes. Diabetes Obes Metab 2001;3:463-471.

145. Trenkwalder P. Effects of candesartan cilexetil on glucose homeostasis. Multicenter Study Group. Basic.Res.Cardiol 1998;93(Suppl 2):140-144.

146. Trenkwalder P, Dahl K, Lehtovirta M, Mulder H. Antihypertensive treatment with candesartan cilexetil does not affect glucose homeostasis or serum lipid profile in patients with mild hypertension and type II diabetes. Blood Press 1998;7:170-175.

147. Henriksen EJ, Jacob S, Kinnick TR, Youngblood EB, Schmit MB, Dietze GJ. ACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide. Am.JPhysiol 1999;277:R332-R336.

148. Henriksen EJ, Jacob S. Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats. Metabolism 1995;44:267-272.

149. Caldiz CI, de Cingolani GE. Insulin resistance in adipocytes from spontaneously hypertensive rats: effect of long-term treatment with enalapril and losartan. Metabolism 1999;48:1041-1046.

150. Jacob S, Henriksen EJ, Fogt DL, Dietze GJ. Effects of trandolapril and verapamil on glucose transport in insulin- resistant rat skeletal muscle. Metabolism 1996;45:535-541.

151. Shiuchi T, Iwai M, Li HS, et al. Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004;43:1003-1010.

152. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001;38:884-890.

153. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002;288:2709-2716.

154. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995-1003.

155. Uehara Y, Hirawa N, Numabe A, et al. Angiotensin-Converting Enzyme Inhibition Delays Onset of Glucosuria With Regression of Renal Injuries in Genetic Rat Model of Non-Insulin- Dependent Diabetes Mellitus. J Cardiovasc Pharmacol Ther 1998;3:327-336.

156. Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME. Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat. Diabetes 2004;53:989-997.

157. Shiuchi T, Cui TX, Wu L, et al. ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 2002;40:329-334.

158. Henriksen EJ, Jacob S, Fogt DL, Dietze GJ. Effect of chronic bradykinin administration on insulin action in an animal model of insulin resistance. Am J Physiol 1998;275:R40-R45.

159. Duka I, Shenouda S, Johns C, Kintsurashvili E, Gavras I, Gavras H. Role of the B(2) receptor of bradykinin in insulin sensitivity. Hypertension 2001;38:1355-1360.

160. Carvalho CR, Thirone AC, Gontijo JA, Velloso LA, Saad MJ. Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes 1997;46:1950-1957.

161. Miyata T, Taguchi T, Uehara M, et al. Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myo-blasts. Eur J Endocrinol 1998;138:344-352.

162. Motoshima H, Araki E, Nishiyama T, et al. Bradykinin enhances insulin receptor tyrosine kinase in 32D cells reconstituted with bradykinin and insulin signaling pathways. Diabetes Res Clin Pract 2000;48:155-170.

163. Rett K, Wicklmayr M, Dietze GJ, Haring HU. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 1996;45 (Suppl 1):S66-S69.

164. Kishi K, Muromoto N, Nakaya Y, et al. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 1998;47:550-558.

165. Richey JM, Ader M, Moore D, Bergman RN. Angiotensin II induces insulin resistance independent of changes in interstitial insulin. Am J Physiol 1999;277:E920-E926.

166. Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, Henriksen EJ. Modulation of insulin resistance and hypertension by voluntary exercise training in the TG(mREN2)27 rat. J Appl Physiol 2002;93:805-812.

167. Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G. Angiotensin II impairs the insulin signaling pathway promoting production of NO by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 2004;94:1211-1218.

168. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000;275(12):9047-9054.

Was this article helpful?

0 0
Spiritual Weight Loss Mentality

Spiritual Weight Loss Mentality

Awesome Ways To Get Over Your Mentality That Keeps you Overweight! This Book Is One Of The Most Valuable Resources In The World When It Comes To Results In Your Slim-down and Health Efforts! Day in day out we keep ourselves absorbed with those matters that matter the most to us. A lot of times, it might be just to survive and bring in some money. In doing so we at times disregard or forget about the extra matters that are essential to balance our lives. They’re even more essential to supply real meaning to our world. You have to pay attention to your wellness.

Get My Free Ebook

Post a comment