SUMMARY

Peripheral diabetic neuropathy (PDN) is one of the most devastating complications of diabetes mellitus. The pathogenesis of PDN involves hyperglycemia-initiated mechanisms as well as other factors, i.e., impaired insulin signaling, hypertension, disturbances of fatty acid and lipid metabolism. This review describes new findings in animal and cell culture models:

1. Supporting the importance of previously established hyperglycemia-initiated mechanisms, such as increased aldose reductase activity, nonenzymatic glycation/glycoxidation, activation of protein kinase-C, and enhanced oxidative stress;

2. Addressing the role of nitrosative stress and downstream effectors of oxidative-nitrosative injury, such as poly(ADP-ribose) polymerase activation, mitogen-activated protein kinase activation, cyclooxygenase-2 activation, activation of nuclear factor-KB, and impaired Ca2+ homeostasis and signaling; and

3. Suggesting the contribution of two newly discovered mechanisms, such as 12/15-lipoxygenase activation and Na+/H+-exchanger-1 activation, in PDN.

Key Words: Aldose reductase; calcium signaling; cyclooxygenase-2; diabetic neuropathy; 12/15-lipoxygenase; mitogen-activated protein kinases; nuclear factor-KB; nonenzymatic glycation; oxidative-nitrosative stress; protein kinase-C; poly(ADP-ribose) polymerase.

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment