1. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787-790.

2. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology 2001;13:1701-1704.

3. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60:108-111.

4. Sundkvist G, Dahlin LB, Nilsson H, et al. Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabetic Med 2000;17:259-268.

5. Cappellari A, Airaghi L, Capra R, et al. Early peripheral nerve abnormalities in impaired glucose tolerance. Electromyogr Clin Neurophysiol 2005;45:241-244.

6. Haslbeck KM, Schleicher E, Bierhaus A, et al. The AGE/RAGE/NF-(kappa) B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes 2005;113:288-291.

7. Dyck PJ, Kratz KM, Karnes JZ, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993;43:817-824.

8. DCCT Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Int Med 1995;122:561-568.

9. Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 1997;42:727-736.

10. Lee TC, Barshes NR, O'Mahony CA, et al. The effect of pancreatic islet transplantation on progression of diabetic retinopathy and neuropathy. Transplant Proc 2005;37:2263-2265.

11. UKPDS. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes. Lancet 1998;352:837-853.

12. Azad N, Emanuele NV, Abraira C, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complications 1999;13:307-313.

13. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348:383-393.

14. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 2002;50:325-392.

15. Chung SS, Chung SK. Aldose reductase in diabetic microvascular complications. Curr Drug Targets 2005;6:475-486.

16. Dyck PJ, Sherman WR, Hallcher LM, et al. Human diabetic endoneurial sorbitol, fructose, and myo-inositol related to sural nerve morphometry. Ann Neurol 1980;8:590-596.

17. Mayhew JA, Gillon KR, Hawthorne JN. Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia 1983;24:13-15.

18. Hale PJ, Nattrass M, Silverman SH, et al. Peripheral nerve concentrations of glucose, fructose, sorbitol and myoinositol in diabetic and non-diabetic patients. Diabetologia 1987;30:464-467.

19. Dyck PJ, Zimmerman BR, Vilen TH, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988;319:542-548.

20. Sivenius K, Pihlajamaki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reduc-tase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes Care 2004;27:2021-2026.

21. Kasajima H, Yamagishi S, Sugai S, Yagihashi N, Yagihashi S. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001;439:46-54.

22. Shimizu H, Ohtani KI, Tsuchiya T, et al. Aldose reductase mRNA expression is associated with rapid development of diabetic microangiopathy in Japanese Type 2 diabetic (T2DM) patients. Diabetes Nutr Metab 2000;13:75-79.

23. Airey M, Bennett C, Nicolucci A, Williams R. Aldose reductase inhibitors for the prevention and treatment of diabetic peripheral neuropathy. Cochrane Database Syst Rev 2000;(2): CD002182.

24. Sima AA, Bril V, Nathaniel V, et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. NEngl J Med 1988;319:548-555.

25. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999;53:580-591.

26. Hotta N, Toyota T, Matsuoka K, et al. The SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicentre placebo-controlled double-blind parallel group study. Diabetes Care 2001;24:1776-1782.

27. Kinekawa F, Kubo F, Matsuda K, et al. Effect of an aldose reductase inhibitor on esophageal dysfunction in diabetic patients. Hepatogastroenterology 2005;52:471-474.

28. Okamoto H, Nomura M, Nakaya Y, et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy and gastroparesis. Intern Med 2003;42:655-664.

29. Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 2004;27: 448-454.

30. Wada R, Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann NY Acad Sci 2005;1043:598-604.

31. McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metallo-proteinase activities: possible role in diabetic nephropathy. Diabetes 2002;51:2612-2618.

Portero-Otin M, Pamplona R, Bellmunt MJ, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes 2002;51:1535-1542. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N (epsilon)-carboxymethyllysine-protein adducts, an advanced glycation end product. Diabetologia 1997;40:1380-1387.

Misur I, Zarkovic K, Barada A, Batelja L, Milicevic Z, Turk Z. Advanced glycation end products in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 2004;41: 158-166.

Amano S, Kaji Y, Oshika T, et al. Advanced glycation end products in human optic nerve head. Br J Ophthalmol 2001;85:52-55.

Bierhaus A, Haslbeck KM, Humpert PM, et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 2004;114: 1741-1751.

Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann NY Acad Sci 2005;1043:784-792.

Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004;25:612-628.

Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004;27:2178-2183.

Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 1995;38:1425-1433.

Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antiox-idant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabetic Med 1999;16:1040-1043.

Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicentre randomized doubleblind placebo-controlled trial (ALADIN II). Free Radic Res 1999;31:171-179. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneu-ropathy with the antioxidant alpha-lipoic acid: a 7-month multicentre randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Diabetes Care 1999;22: 1296-1301.

Ametov AS, Barinov A, Dyck PJ, et al. SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care 2003;26:770-776.

Malik RA, Tomlinson DR. Angiotensin-converting enzyme inhibitors: are there credible mechanisms for beneficial effects in diabetic neuropathy? Int Rev Neurobiol 2002;50: 415-430.

Young MJ, Veves A, Walker MG, Boulton AJM. Correlations between nerve function and tissue oxygenation in diabetic patients: further clues to the etiology of diabetic neuropathy? Diabetologia 1992;35:1146-1150.

Akbari CM, Gibbons GW, Habershaw GM, LoGerfo FW, Veves A. The effect of arterial reconstruction on the natural history of diabetic neuropathy. Arch Surg 1997;132:148-152. Veves A, Donaghue VM, Sarnow MR, Giurini JM, Campbell DR, LoGerfo FW. The impact of reversal of hypoxia by revascularization on the peripheral nerve function of diabetic patients. Diabetologia 1996;39:344-348.

Arora S, Pomposelli F, LoGerfo FW, Veves A. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg 2002;35:501-505.

50. Jarmuzewska EA, Mangoni AA. Pulse pressure is independently associated with sensorimotor peripheral neuropathy in patients with type 2 diabetes. J Intern Med 2005;258: 38-44.

51. Tesfaye S, Chaturvedi N, Eaton SE, et al. EURODIAB Prospective Complications Study Group. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341-350.

52. Thrainsdottir S, Malik RA, Dahlin LB, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 2003;52:2615-2622.

53. Malik RA, Tesfaye S, Newrick PG, et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005;48:578-585.

54. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 2002;106:3037-3043.

55. Malik RA, Schofield IJ, Izzard A, Austin C, Bermann G, Heagerty AM. Effects of angiotensin type-1 receptor antagonism on small artery function in patients with type 2 diabetes mellitus. Hypertension 2005;45:264-269.

56. Reja A, Tesfaye S, Harris N, Ward JD. Improvement in nerve conduction and quantitative sensory tests after treatment with lisinopril. Diabetic Med 1995;12:307-309.

57. Malik RA, Williamson S, Abbott CA, et al. Effect of angiotensin-converting enzyme (ACE) inhibitor trandalopril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998;352:1978-1981.

58. Estaci RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 2000;23:B54-B64.

59. Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol 2002;50:61-82.

60. Cameron NE, Cotter MA. Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysme-tabolism. Diabetes Metab Res Rev 2002;18:315-323.

61. Vinik AI, Bril V, Kempler P, et al. the MBBQ Study Group. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther 2005;27:1164-1180.

62. Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of ator-vastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab 2004;89:740-747.

63. Okamoto T, Yamagishi SI, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002;16:1928-1930.

64. Fried LF, Forrest KY, Ellis D, Chang Y, Silvers N, Orchard TJ. Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complications 2001;15:113-119.

65. Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 2003;163:21-28.

66. Delaney CL, Russell JW, Cheng HL, Feldman EL. Insulin-like growth factor-I and overexpression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 2001;60:147-160.

67. Grandis M, Nobbio L, Abbruzzese M, et al. Insulin treatment enhances expression of IGF-I in sural nerves of diabetic patients. Muscle Nerve 2001;24:622-629.

68. Wahren J, Shafqat J, Johansson J, Chibalin A, Ekberg K, Jornvall H. Molecular and cellular effects of C-peptide—new perspectives on an old peptide. Exp Diabesity Res 2004;5: 15-23.

69. Sima AA. C-peptide and diabetic neuropathy. Expert Opin InvestigDrugs 2003;12:1471-1488.

70. Cotter MA, Ekberg K, Wahren J, Cameron NE. Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 2003;52:1812-1817.

71. Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindstrom P, Wahren J. Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes 2003;52:536-541.

72. Ekberg K, Juntti-Berggren L, Norrby A, et al. C-peptide improves sensory nerve function in type 1 diabetes and neuropathy. Diabetologia 2005;48:A81.

73. Malik RA, Li C, Aziz W, et al. Elevated plasma CD105 and vitreous VEGF levels in diabetic retinopathy. J Cell Mol Med 2005;9:692-697.

74. Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 2002;13:39-53.

75. Veves A, King GL. Can VEGF reverse diabetic neuropathy in human subjects? J Clin Invest 2001;107:1215-1218.

76. Chavez JC, Almhanna K, Berti-Mattera LN. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett 2005;374:179-182.

77. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159-162.

78. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083-1092.

79. Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001;8:761-768.

80. Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Hum Gene Ther 2001;12:1593-1594.

81. Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 1999;9:393-413.

82. Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 1996;2:703-707.

83. Diemel LT, Cai F, Anand P, et al. Increased nerve growth factor mRNA in lateral calf skin biopsies from diabetic patients. Diabetic Med 1999;16:113-118.

84. Kennedy AJ, Wellmer A, Facer P, et al. Neurotrophin-3 is increased in skin in human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1998;65:393-395.

85. Lee DA, Gross L, Wittrock DA, Windebank AJ. Localization and expression of ciliary neu-rotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy. JNeuropathol Exp Neurol 1996;55:915-923.

86. Terenghi G, Mann D, Kopelman PG, Anand P. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett 1997;228:33-36.

87. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 1998;51:695-702.

88. Apfel SC, Schwartz S, Adornato BT, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000;284:2215-2221.

89. Wellmer A, Misra VP, Sharief MK, Kopelman PG, Anand P. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J Peripher Nerv Syst 2001;6:204-210.

Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook

Post a comment