References

1. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787-790.

2. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology 2001;13:1701-1704.

3. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60:108-111.

4. Sundkvist G, Dahlin LB, Nilsson H, et al. Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabetic Med 2000;17:259-268.

5. Cappellari A, Airaghi L, Capra R, et al. Early peripheral nerve abnormalities in impaired glucose tolerance. Electromyogr Clin Neurophysiol 2005;45:241-244.

6. Haslbeck KM, Schleicher E, Bierhaus A, et al. The AGE/RAGE/NF-(kappa) B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes 2005;113:288-291.

7. Dyck PJ, Kratz KM, Karnes JZ, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993;43:817-824.

8. DCCT Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Int Med 1995;122:561-568.

9. Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 1997;42:727-736.

10. Lee TC, Barshes NR, O'Mahony CA, et al. The effect of pancreatic islet transplantation on progression of diabetic retinopathy and neuropathy. Transplant Proc 2005;37:2263-2265.

11. UKPDS. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes. Lancet 1998;352:837-853.

12. Azad N, Emanuele NV, Abraira C, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complications 1999;13:307-313.

13. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348:383-393.

14. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 2002;50:325-392.

15. Chung SS, Chung SK. Aldose reductase in diabetic microvascular complications. Curr Drug Targets 2005;6:475-486.

16. Dyck PJ, Sherman WR, Hallcher LM, et al. Human diabetic endoneurial sorbitol, fructose, and myo-inositol related to sural nerve morphometry. Ann Neurol 1980;8:590-596.

17. Mayhew JA, Gillon KR, Hawthorne JN. Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia 1983;24:13-15.

18. Hale PJ, Nattrass M, Silverman SH, et al. Peripheral nerve concentrations of glucose, fructose, sorbitol and myoinositol in diabetic and non-diabetic patients. Diabetologia 1987;30:464-467.

19. Dyck PJ, Zimmerman BR, Vilen TH, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988;319:542-548.

20. Sivenius K, Pihlajamaki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reduc-tase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes Care 2004;27:2021-2026.

21. Kasajima H, Yamagishi S, Sugai S, Yagihashi N, Yagihashi S. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001;439:46-54.

22. Shimizu H, Ohtani KI, Tsuchiya T, et al. Aldose reductase mRNA expression is associated with rapid development of diabetic microangiopathy in Japanese Type 2 diabetic (T2DM) patients. Diabetes Nutr Metab 2000;13:75-79.

23. Airey M, Bennett C, Nicolucci A, Williams R. Aldose reductase inhibitors for the prevention and treatment of diabetic peripheral neuropathy. Cochrane Database Syst Rev 2000;(2): CD002182.

24. Sima AA, Bril V, Nathaniel V, et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. NEngl J Med 1988;319:548-555.

25. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999;53:580-591.

26. Hotta N, Toyota T, Matsuoka K, et al. The SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicentre placebo-controlled double-blind parallel group study. Diabetes Care 2001;24:1776-1782.

27. Kinekawa F, Kubo F, Matsuda K, et al. Effect of an aldose reductase inhibitor on esophageal dysfunction in diabetic patients. Hepatogastroenterology 2005;52:471-474.

28. Okamoto H, Nomura M, Nakaya Y, et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy and gastroparesis. Intern Med 2003;42:655-664.

29. Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 2004;27: 448-454.

30. Wada R, Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann NY Acad Sci 2005;1043:598-604.

31. McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metallo-proteinase activities: possible role in diabetic nephropathy. Diabetes 2002;51:2612-2618.

Portero-Otin M, Pamplona R, Bellmunt MJ, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes 2002;51:1535-1542. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N (epsilon)-carboxymethyllysine-protein adducts, an advanced glycation end product. Diabetologia 1997;40:1380-1387.

Misur I, Zarkovic K, Barada A, Batelja L, Milicevic Z, Turk Z. Advanced glycation end products in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 2004;41: 158-166.

Amano S, Kaji Y, Oshika T, et al. Advanced glycation end products in human optic nerve head. Br J Ophthalmol 2001;85:52-55.

Bierhaus A, Haslbeck KM, Humpert PM, et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 2004;114: 1741-1751.

Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann NY Acad Sci 2005;1043:784-792.

Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004;25:612-628.

Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004;27:2178-2183.

Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 1995;38:1425-1433.

Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antiox-idant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabetic Med 1999;16:1040-1043.

Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicentre randomized doubleblind placebo-controlled trial (ALADIN II). Free Radic Res 1999;31:171-179. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneu-ropathy with the antioxidant alpha-lipoic acid: a 7-month multicentre randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Diabetes Care 1999;22: 1296-1301.

Ametov AS, Barinov A, Dyck PJ, et al. SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care 2003;26:770-776.

Malik RA, Tomlinson DR. Angiotensin-converting enzyme inhibitors: are there credible mechanisms for beneficial effects in diabetic neuropathy? Int Rev Neurobiol 2002;50: 415-430.

Young MJ, Veves A, Walker MG, Boulton AJM. Correlations between nerve function and tissue oxygenation in diabetic patients: further clues to the etiology of diabetic neuropathy? Diabetologia 1992;35:1146-1150.

Akbari CM, Gibbons GW, Habershaw GM, LoGerfo FW, Veves A. The effect of arterial reconstruction on the natural history of diabetic neuropathy. Arch Surg 1997;132:148-152. Veves A, Donaghue VM, Sarnow MR, Giurini JM, Campbell DR, LoGerfo FW. The impact of reversal of hypoxia by revascularization on the peripheral nerve function of diabetic patients. Diabetologia 1996;39:344-348.

Arora S, Pomposelli F, LoGerfo FW, Veves A. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg 2002;35:501-505.

50. Jarmuzewska EA, Mangoni AA. Pulse pressure is independently associated with sensorimotor peripheral neuropathy in patients with type 2 diabetes. J Intern Med 2005;258: 38-44.

51. Tesfaye S, Chaturvedi N, Eaton SE, et al. EURODIAB Prospective Complications Study Group. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341-350.

52. Thrainsdottir S, Malik RA, Dahlin LB, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 2003;52:2615-2622.

53. Malik RA, Tesfaye S, Newrick PG, et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005;48:578-585.

54. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 2002;106:3037-3043.

55. Malik RA, Schofield IJ, Izzard A, Austin C, Bermann G, Heagerty AM. Effects of angiotensin type-1 receptor antagonism on small artery function in patients with type 2 diabetes mellitus. Hypertension 2005;45:264-269.

56. Reja A, Tesfaye S, Harris N, Ward JD. Improvement in nerve conduction and quantitative sensory tests after treatment with lisinopril. Diabetic Med 1995;12:307-309.

57. Malik RA, Williamson S, Abbott CA, et al. Effect of angiotensin-converting enzyme (ACE) inhibitor trandalopril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998;352:1978-1981.

58. Estaci RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 2000;23:B54-B64.

59. Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol 2002;50:61-82.

60. Cameron NE, Cotter MA. Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysme-tabolism. Diabetes Metab Res Rev 2002;18:315-323.

61. Vinik AI, Bril V, Kempler P, et al. the MBBQ Study Group. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther 2005;27:1164-1180.

62. Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of ator-vastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab 2004;89:740-747.

63. Okamoto T, Yamagishi SI, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002;16:1928-1930.

64. Fried LF, Forrest KY, Ellis D, Chang Y, Silvers N, Orchard TJ. Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complications 2001;15:113-119.

65. Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 2003;163:21-28.

66. Delaney CL, Russell JW, Cheng HL, Feldman EL. Insulin-like growth factor-I and overexpression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 2001;60:147-160.

67. Grandis M, Nobbio L, Abbruzzese M, et al. Insulin treatment enhances expression of IGF-I in sural nerves of diabetic patients. Muscle Nerve 2001;24:622-629.

68. Wahren J, Shafqat J, Johansson J, Chibalin A, Ekberg K, Jornvall H. Molecular and cellular effects of C-peptide—new perspectives on an old peptide. Exp Diabesity Res 2004;5: 15-23.

69. Sima AA. C-peptide and diabetic neuropathy. Expert Opin InvestigDrugs 2003;12:1471-1488.

70. Cotter MA, Ekberg K, Wahren J, Cameron NE. Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 2003;52:1812-1817.

71. Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindstrom P, Wahren J. Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes 2003;52:536-541.

72. Ekberg K, Juntti-Berggren L, Norrby A, et al. C-peptide improves sensory nerve function in type 1 diabetes and neuropathy. Diabetologia 2005;48:A81.

73. Malik RA, Li C, Aziz W, et al. Elevated plasma CD105 and vitreous VEGF levels in diabetic retinopathy. J Cell Mol Med 2005;9:692-697.

74. Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 2002;13:39-53.

75. Veves A, King GL. Can VEGF reverse diabetic neuropathy in human subjects? J Clin Invest 2001;107:1215-1218.

76. Chavez JC, Almhanna K, Berti-Mattera LN. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett 2005;374:179-182.

77. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159-162.

78. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083-1092.

79. Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001;8:761-768.

80. Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Hum Gene Ther 2001;12:1593-1594.

81. Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 1999;9:393-413.

82. Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 1996;2:703-707.

83. Diemel LT, Cai F, Anand P, et al. Increased nerve growth factor mRNA in lateral calf skin biopsies from diabetic patients. Diabetic Med 1999;16:113-118.

84. Kennedy AJ, Wellmer A, Facer P, et al. Neurotrophin-3 is increased in skin in human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1998;65:393-395.

85. Lee DA, Gross L, Wittrock DA, Windebank AJ. Localization and expression of ciliary neu-rotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy. JNeuropathol Exp Neurol 1996;55:915-923.

86. Terenghi G, Mann D, Kopelman PG, Anand P. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett 1997;228:33-36.

87. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 1998;51:695-702.

88. Apfel SC, Schwartz S, Adornato BT, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000;284:2215-2221.

89. Wellmer A, Misra VP, Sharief MK, Kopelman PG, Anand P. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J Peripher Nerv Syst 2001;6:204-210.

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook


Post a comment