References

1. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971;105:13-20.

2. Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002;181-182:471-474.

3. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626-629.

4. Kiechle FL, Zhang X. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 2002;326:27-45.

5. Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002;4:769-781.

6. Leist M, Single B, Naumann H, et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 1999;249:396-403.

7. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000;80:315-360.

8. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002;9:1031-1042.

9. Zheng L, Szabo C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 2004;53: 2960-2967.

10. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375-429.

11. Obrosova IG, Pacher P, Szabo C, et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 2005;54:234-242.

12. Nagata S, Golstein P. The Fas death factor. Science 1995;267:1449-1456.

13. Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004;29:486-494.

14. Degli Esposti M. Mitochondria in apoptosis: past, present and future. Biochem Soc Trans 2004;32:493-495.

15. Guillot R, Bringuier AF, Porokhov B, Guillausseau PJ, Feldmann G. Increased levels of soluble Fas in serum from diabetic patients with neuropathy. Diabetes Metab 2001;27:315-321.

16. Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 2004;53:726-734.

17. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-1312.

18. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:44-51.

19. Leinninger GM, Russell JW, van Golen CM, Berent A, Feldman EL. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ 2004;11:885-896.

20. Russell JW, Golovoy D, Vincent AM, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002;16:1738-1748.

21. Cowell RM, Russell JW. Peripheral Neuropathy and the Schwann Cell, in Neuroglia (Kettenmann H, Ransom BR, eds.), Oxford University Press, 2004, pp. 573-585.

22. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann NY Acad Sci 2002;959:368-383.

23. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004;25:612-628.

24. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998;60:619-642.

25. Eskes R, Antonsson B, Osen-Sand A, et al. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 1998;143:217-224.

26. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998;95:4997-5002.

27. Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999;6:347-363.

28. Srinivasan S, Stevens MJ, Wiley JW. Diabetic peripheral neuropathy: Evidence for apop-tosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932-1938.

29. Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 2003;52:165-171.

30. Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 2003;52:2363-2371.

31. Kishi M, Tanabe J, Schmelzer JD, Low PA. Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 2002;51:819-824.

32. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997;387:773-776.

33. Schulz JB, Bremen D, Reed JC, et al. Cooperative interception of neuronal apoptosis by bcl-2 and bag-1 expression: prevention of caspase activaton and reduced production of reactive oxygen species. J Neurochem 1997;69:2075-2086.

34. Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H. Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. J Biochem 1996;120:540-546.

35. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322-1326.

36. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735-1738.

37. Bissonette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992;359:552-554.

38. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 1994;262:695-700.

39. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994;91:6569-6573.

40. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003;301:513-517.

41. Zamzami N, El Hamel C, Maisse C, et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000;19:6342-6350.

42. Ruffolo SC, Breckenridge DG, Nguyen M, et al. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000;7:1101-1108.

43. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000;7:1166-1173.

44. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727-730.

45. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003;10:870-880.

46. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491-501.

47. Krohn AJ, Wahlbrink T, Prehn JH. Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 1999;19:7394-7404.

48. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998;273:5841-5845.

49. Song Q, Kuang Y, Dixit VM, Vincenz C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 1999;18:167-178.

50. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,3,6,7,8, and 10 in a caspase-9 dependent manner. J Cell Biol 1999;144:281-292.

51. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegants. Cell 1986;44:817-829.

52. Jacobson MD, Evan GI. Breaking the ice. Structural and functional similarities have been discovered between two mammalian proteins, Bcl-2 and interleukin 1b-converting enzyme, and proteins encoded by nematode cell-death genes. Curr Biol 1994;4:337-340.

53. Corkins MR, Vanderhoof JA, Slentz DH, MacDonald RG, Park JHY. Growth stimulation by transfection of intestinal epithelial cells with an antisense insulin-like growth factor binding protein-2 construct. Biochem Biophys Res Commun 1995;211:707-713.

54. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000;97:12,222-12,226.

55. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-820.

56. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787-790.

57. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49:1006-1015.

58. Russell JW, Golovoy D, Vincent A, et al. High glucose induced-oxidative stress and mito-chondrial dysfunction in neurons. FASEB J 2002;16:1738-1748.

59. Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. MutatRes 2002;509:127-151.

60. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328:85-92.

61. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002;3:214-220.

62. Cowell R, Cherian K, Russell JW. Regulation of neuronal nitric oxide synthase (nNOS) in models of diabetic neuropathy. J Peripheral Nerv System 2003;8:1-78.

63. Garcia SF, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001;7:108-113.

64. Cowell RM, Russell JW. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J Investig Med 2004;52:33-44.

65. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001;3:193-197.

66. Foster MW, McMahon TJ, Stamler JS. S-nitrosylation in health and disease. Trends Mol Med 2003;9:160-168.

67. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 2000;14:1889-1900.

68. Raoul C, Estevez AG, Nishimune H, et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron 2002;35:1067-1083.

69. Gonzalez-Zulueta M, Ensz LM, Mukhina G, et al. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 1998;18:2040-2055.

70. Murphy MP. Nitric oxide and cell death. Biochim Biophys Acta 1999;1411:401-414.

71. Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33:1451-1464.

72. Eu JP, Liu L, Zeng M, Stamler JS. An apoptotic model for nitrosative stress. Biochemistry 2000;39:1040-1047.

73. Reiss P, Casula M, de Ronde A, Weverling GJ, Goudsmit J, Lange JM. Greater and more rapid depletion of mitochondrial DNA in blood of patients treated with dual (zidovu-dine+didanosine or zidovudine+zalcitabine) vs. single (zidovudine) nucleoside reverse transcriptase inhibitors. HIV Med 2004;5:11-14.

74. Zochodne DW, Verge VM, Cheng C, et al. Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropathol Exp Neurol 2000;59:798-807.

75. Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001;44:1973-1988.

76. Thomas SR, Chen K, Keaney JF, Jr. Oxidative stress and endothelial nitric oxide bioactivity. Antioxid Redox Signal 2003;5:181-194.

77. Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J. Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 2001;124:2319-2334.

78. Sayers NM, Beswick LJ, Middlemas A, et al. Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 2003;52:2372-2380.

79. Vincent AM, McLean LL, Backus C, Feldman EL. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 2005;19:638-640.

80. Honma H, Podratz JL, Windebank AJ. Acute glucose deprivation leads to apoptosis in a cell model of acute diabetic neuropathy. J Peripher Nerv Syst 2003;8:65-74.

81. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxi-dant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927-1937.

82. Obrosova IG. How does glucose generate oxidative stress in peripheral nerve? Int Rev Neurobiol 2002;50:3-35.

83. Huang TJ, Price SA, Chilton L, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 2003;52:2129-2136.

84. Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci 2005;28:42-54.

85. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apopto-sis and associated mitochondrial dysfunction. Diabetes 2000;49:1932-1938.

86. Jezek P, Costa AD, Vercesi AE. Evidence for anion-translocating plant uncoupling mitochondrial protein in potato mitochondria. J Biol Chem 1996;271:32,743-32,748.

87. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 1993;21:3097-3103.

88. Russell JW, Windebank AJ, Schenone A, Feldman EL. Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J Neurobiol 1998;36:455-467.

89. Ghatan S, Larner S, Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 2000;150:335-347.

90. Leinninger GM, Backus C, Uhler MD, Lentz SI, Feldman EL. Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J 2004;18:1544-1546.

91. Gustafsson H, Adamson L, Hedander J, Walum E, Forsby A. Insulin-like growth factor type 1 upregulates uncoupling protein 3. Biochem Biophys Res Commun 2001;287:1105-1111.

92. Guerra C, Benito M, Fernandez M. IGF-I induces the uncoupling protein gene expression in fetal rat brown adipocyte primary cultures: role of C/EBP transcription factors. Biochem Biophys Res Commun 1994;201:813-819.

93. Valverde AM, Lorenzo M, Navarro P, Benito M. Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocrinol 1997;11:595-607.

94. Price SA, Hounsom L, Purves-Tyson TD, Fernyhough P, Tomlinson DR. Activation of JNK in sensory neurons protects against sensory neuron cell death in diabetes and on exposure to glucose/oxidative stress in vitro. Ann NY Acad Sci 2003;1010:95-99.

95. Honma H, Gross L, Windebank AJ. Hypoxia-induced apoptosis of dorsal root ganglion neurons is associated with DNA damage recognition and cell cycle disruption in rats. Neurosci Lett 2004;354:95-98.

96. Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 1996;2:703-707.

97. Unger JW, Klitzsch T, Pera S, Reiter R. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord. Exp Neurol 1998;153:23-34.

98. Berent-Spillson A, Robinson A, Golovoy D, Slusher B, Rojas C, Russell JW. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J Neurochem 2004;89:90-99.

99. Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 2002;513:197-223.

100. Vincent AM, Maiese K. The metabotropic glutamate system promotes neuronal survival through distinct pathways of programmed cell death. Exp Neurol 2000;166:65-82.

101. De Blasi A, Conn PJ, Pin J, Nicoletti F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001;22:114-120.

102. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 2000;75:889-907.

103. Zhang W, Slusher B, Murakawa Y, et al. GCPII (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. J Neurol Sci 2002;194:21-28.

104. Berent Spillson A, Russell JW. Metabotropic glutamate receptor regulation of neuronal injury. Exp Neurol 2003;184:S97-S105.

105. Russell JW, Feldman EL. Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm Metab Res 1999;31:90-96.

106. Guo C, Quobatari A, Shangguan Y, Hong S, Wiley JW. Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil 2004;16:335-345.

107. Schmidt RE. Neuronal preservation in the sympathetic ganglia of rats with chronic strep-tozotocin-induced diabetes. Brain Res 2001;921:256-259.

108. Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Miller MS. Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. Am J Pathol 1999;155:1651-1660.

109. Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 2003;163:21-28.

110. Delaney CL, Russell JW, Cheng H-L, Feldman EL. Insulin-like growth factor-I and overexpression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 2001;60:147-160.

111. Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 2004;320:241-248.

112. Pan Z, Sampath D, Jackson G, Werrbach-Perez K, Perez-Polo R. Nerve growth factor and oxidative stress in the nervous system. Adv Exp Med Biol 1997;429:173-193.

113. Park DS, Morris EJ, Stefanis L, et al. Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 1998;18:830-840.

114. Lieberthal W, Triaca V, Koh JS, Pagano PJ, Levine JS. Role of superoxide in apoptosis induced by growth factor withdrawal. Am J Physiol 1998;275(5 Pt 2):F691-F702.

115. Russell JW, Kaminsky A. Oxidative injury in diabetic neuropathy, in Nutrition and Diabetes: Pathophysiology and Management (Opara E, ed.), by courtesy of Taylor & Francis Group, LLC, Boca Raton, FL, 2006;381-397.

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment