1. Sima AAF, Nathaniel V, Bril V, McEwen TAJ, Greene DA. Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 1988; 81:349-364.

2. Sugimoto K, Murakawa Y, Sima AAF. Diabetic neuropathy—a continuing enigma. Diabetes/Metab Res Rev 2000;16(6):408-433.

3. Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ III, O'Brien PC. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study Cohort. Diabetes Care 1999;22:1479-1486.

4. Dyck JB, Dyck PJ. Diabetic neuropathy. in Diabetic neuropathy (Dyck and Thomas eds.), WB Saunders Comp., Philadelphia, 1999, pp. 255-295.

5. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabete Metab 1977;3:97-107.

6. Vinik AI, Liuzze FJ, Holland MT, Stansberry KB, LeBean JM, Colen LB. Diabetic neuropathies. Diabetes Care 1992;15:1926-1975.

7. Sima AAF. Pathological definition and evaluation of diabetic neuropathy and clinical correlations. Can J Neurol Sci 1994;21(Suppl 4):S13-S17.

8. Tesfaye S, Stevens LK, Stephanson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complication Study. Diabetologia 1996;39:1377-1384.

9. Sima AAF, Thomas PK, Ishii D, Vinik A. Diabetic Neuropathies. Diabetologia 1997;40: B74-B77.

10. Sima AAF. New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci 2003;60:2445-2464.

11. Greene DA, Sima AAF, Stevens MB, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992;15:1902-1925.

12. Sima AAF. Diabetes underlies common neurological disorders. Ann Neurol 2004;56:459-461 (Editorial).

13. Sima AAF. Can the BB-rat help to unravel diabetic neuropathy? Annotation. Neuropath Appl Neurobiol 1985;11:253-264.

14. Marliss EB, Nakhooda AF, Poussier P, Sima AAF. The diabetic syndrome of the BB-Wistar rat. Possible relevance to type I (insulin dependent) diabetes in man. Diabetologia 1982;22:225-232.

15. Sima AAF, Merry AC, Hall DE, Grant M, Murray FT, Guberski D. The BB/ZDR-rat; A model for type II diabetic neuropathy: Exp. Clin Endocrin Diabetes 1997;105:63-64.

16. Sima AAF, Bril V, Greene DA. Pathogenetic heterogeneity in human diabetic neuropathy. Pediatr Adoles Endocrin 1989;18:56-62.

17. Greene DA, Lattimer SA, Sima AAF. Perspectives in diabetes. Are disturbances of sorbitol, phosphoinositide and (Na,K)-ATP-ase regulation involved in the pathogenesis of diabetic neuropathy? Diabetes 1988;37:688-693.

18. Pop-Busui R, Sullivan KA, van Huysen C, et al. Depletion of taurine in experimental diabetic neuropathy: implications for nerve metabolic, vascular and functional deficits. Exp Neurol 2001;168:259-272.

19. Stevens MJ, Dananberg J, Feldman EL, et al. The linked roles of nitric oxide, aldose reductase and (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. Metabolism 1996;45:865-872.

20. Requena JR, Baynes JW. Studies in animal models on the role of glycation and advanced glycation-end-products (AGE's) in the pathogenesis of diabetic complications: pitfalls and limitations. in Chronic Complications in Diabetes (Sima AAF ed.), Harwood Academy Publication, Amsterdam, 2000, pp. 43-70.

21. Apfel SC. Neurotrophic factors and diabetic peripheral neuropathy. Eur Neurol 1999;41(Suppl 1):27-34.

22. LeRoith D. The insulin-like growth factor system. Exp Diabetes Res 2003;4:205-212.

23. Pittinger G, Vinik A. Nerve growth factor and diabetic neuropathy. Exp Diabetes Res 2003;4:257-270.

24. Sima AAF, Li Z-G, Zhang W. The IGF system and neurological complications in diabetes. Exp Diabetes Res 2003;4:235-256.

25. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-820.

26. Cameron NE, Cotter MA, Robertson S. Rapid reversal of a motor nerve conduction deficit in streptozotocin-diabetic rats by the angiotensin converting enzyme inhibitor lisinopril. Acta Diabetol 1993;30:46^8.

27. Stevens MJ, Obrosova I, Pop-Busui R, Greene DA, Feldman EL. Pathogenesis of diabetic neuropathy. in Ellenberg and Rifkin's Diabetes Mellitus (Porte D Jr, Sherwin RS, Baron A eds.), McGraw Hill, New York, 2002, pp. 747-770.

28. Stevens MJ, Zhang W, Li F, Sima AAF. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor-rats. Am J Physiol 2004;287:E497-E505.

29. Greene DA, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides and sodium-potassium ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599-606.

30. Greene DA, Chakrabarti S, Lattimer SA, Sima AAF. Role of sorbitol accumulation and myoinositol depletion in paranodal swelling of large myelinated nerve fibers in the insulin-deficient spontaneously diabetic biobreeding rat. J Clin Invest 1987;79:1479-1485.

31. Sima AAF, Zhang W, Xu G, Sugimoto K, Guberski DL, Yorek MA. A comparison of diabetic polyneuropathy in type-2 diabetic BBZDR/Wor-rat and in type 1 diabetic BB/Wor-rat. Diabetologia 2000;43:786-793.

32. Sima AAF, Zhang W-X, Sugimoto K, et al. C-peptide prevents and improves chronic type 1 diabetic neuropathy in the BB/Wor-rat. Diabetologia 2001;44:889-897.

33. Zhang W, Yorek M, Pierson CR, Murakawa Y, Breidenbach A, Sima AAF. Human C-peptide dose dependently prevents early neuropathy in the BB/Wor-rat. Intern J Exp Diabetes Res 2001;2(3):187-194.

34. Forst T, de la Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+, K+-ATPase activity in diabetes mellitus type 1. Clin Sci 2000;98:283-290.

35. Ohtomo Y, Aperia A, Sahlgren B, Johansson B-L, Wahren J. C-peptide stimulates rat renal tubular Na+/K+-ATPase activity in synergism with neuropeptide Y. Diabetologia 1996;39:199-205.

36. Greene DA, Sima AAF, Stevens M, et al. Aldose reductase inhibitors: An approach to the treatment of the nerve damage of diabetic neuropathy. Diabetes/Metab Rev 1993;9(3): 189-217.

37. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochem J 2002;366:737-744.

38. Wahren J, Ekberg K, Johansson J, et al. Role of C-peptide in human physiology. Am J Physiol 2000;278:E759-E768.

39. Grunberger G, Sima AAF. The C-peptide signaling. Exp Diabetes Res 2004;5:25-36.

40. Pittinger GL, Liu D, Vinik AI. The apoptotic death of neuroblastoma cells caused by serum from patients with insulin-dependent diabetes and neuropathy may be Fas-mediated. J Neuroimmunol 1997;76:153-160.

41. Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropath Exp Neurology 2003;62:765-779.

42. Li Z-G, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 2003;19:375-385.

43. Li Z-G, Zhang W, Sima AAF. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 2005;1037:12-24.

44. Reico-Pinto E, Lang FF, Ishii DN. Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human blastoma cells. Proc Natl Acad Sci USA 1984;81:2562-2566.

45. Pierson CR, Zhang W, Murakawa Y, Sima AAF. Tubulin and neurofilament expression and axonal growth differ in type 1 and type 2 diabetic polyneuropathy. J Neuropath Exp Neurol 2003;62:260-271.

46. Kamiya H, Murakawa Y, Zhang W, Sima AAF. Sensory nociceptive neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 2005;21:448-458.

47. Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2004;56:827-835.

48. Sima AAF, Kamiya H. Insulin, C-peptide and diabetic neuropathy. Sci Med 2004;10:308-319.

49. Johansson BL, Borg K, Fernquist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabetes Med 2000;17:181-189.

50. Johansson BL, Borg K, Fernquist-Forbes E, et al. C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 1996;39:687-695.

51. Ekberg K, Brismar T, Johansson B-L, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 2003;52:536-541.

52. Brismar T, Sima AAF. Changes in nodal function in nerve fibres of the spontaneously diabetic BB-Wistar rat. Nodal clamp analysis. Acta Physiol Scand 1981;113:499-506.

53. Sima AAF, Brismar T. Reversible diabetic nerve dysfunction. Structural correlates to electrophysiological abnormalities. Ann Neurol 1985;18:21-29.

54. Brismar T. Abnormal Na-currents in diabetic rat nerve nodal membrane. Diabetes Med 1993;10(Suppl 2):S110-S112.

55. Sima AAF, Lattimer SA, Yagihashi S, Greene DA. Axo-glial dysjunction: A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic BB-rat. J Clin Invest 1986;77:474-484.

56. Sima AAF, Prashar A, Zhang W-X, Chakrabarti S, Greene DA. Preventive effect of long term aldose reductase inhibition (Ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic BB-rat. J Clin Invest 1990;85:1410-1420.

57. Sima AAF, Ristic H, Merry A, et al. The primary preventional and secondary interventa-tive effects of acetyl-L-carnitine on diabetic neuropathy in the BB/W-rat. J Clin Invest 1996;97:1900-1907.

58. Kitano Y, Kuwabara S, Misawa S, et al. The acute effect of glycemic control on axonal excitability in human diabetics. Ann Neurol 2004;56:462-467.

59. Brismar T, Sima AAF, Greene DA. Reversible and irreversible nodal dysfunction in diabetic neuropathy. Ann Neurol 1987;21:504-507.

60. Cherian PV, Kamijo M, Angelides KJ, Sima AAF. Nodal Na+-channel displacement is associated with nerve conduction slowing in the chronically diabetic BB/W-rat. J Diabetes Complications 1996;10:192-200.

61. Sima AAF, Zhang W, Li Z-G, Murakawa Y, Pierson CR. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 2004;53:1556-1563.

62. Quattrini C, Tesfaye S. Understanding the impact of painful diabetic neuropathy. Diabetes Metab Res Rev 2003;19(Suppl 1):S2-S8.

63. Kapur D. Neuropathic pain and diabetes. Diabetes Metab Res Rev 2003;19(Suppl 1): S9-S15.

64. Dyck PJ, Lambert EH, O'Brien PC. Pain in peripheral neuropathy related to rate and kind of fiber degeneration. Neurology 1976;26:466-471.

65. Woolf CJ, Shortland P, Reynolds M, et al. Reorganization of central terminals of myeli-nated primary afferents in rat dorsal horn following peripheral axotomy. J Comp Neurol 1995;360:121-134.

66. Chen X, Levin JD. Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat. Neuroscience 2003;121:1007-1015.

67. Burchiel KJ, Russel LC, Lee RP, Sima AAF. Spontaneous activity of primary afferent neurons in diabetic BB-Wistar rats. A possible mechanism of chronic diabetic pain. Diabetes 1985;34:1210-1213.

68. Arendt-Nielsen L, Sonnenborg FA, Andersen OK. Fascilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: an experimental study on central integration in humans. Eur J Appl Physiol 2000;81:165-173.

69. Hirade M, Yasuda H, Omatsu-Kanbe M, et al. Tetrodotoxin resistant sodium channels of dorsal root ganglion neurons are readily activated in diabetic rats. Neuroscience 1999;90:933-939.

70. Murakawa Y, Zhang W, Pierson CR, et al. Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 2002;18:473-483.

71. Grunberger G, Qiang X, Li Z-G, et al. Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 2001;44:1247-1257.

72. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001;24:1448-1453.

73. Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve 2001;24:1229-1231.

74. Sima AAF, Hay K. Functional aspects and pathogenetic considerations of the neuropathy in the spontaneously diabetic BB-Wistar rat. Neuropath Appl Neurobiol 1981;7:341-350.

75. Sima AAF, Lorusso AC, Thibert P. Distal symmetric polyneuropathy in the spontaneously diabetic BB-Wistar rat. An ultrastructural and teased fiber study. Acta Neuropath (Berl) 1982;58:39-47.

76. Greene DA, Lattimer SA, Sima AAF. Perspectives in diabetes. Are disturbances of sorbitol, phosphoinositide and (Na,K)-ATP-ase regulation involved in the pathogenesis of diabetic neuropathy? Diabetes 1988;37:688-693.

77. Sima AAF, Hinton D. Hirano-bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neurol Scand 1983;68:107-112.

78. Zochodne DW, Verge VMK, Cheng C, Sun H, Johnston J. Does diabetes target ganglion neurons? Progressive sensory neuron involvement in long term experimental diabetes. Brain 2001;124:2319-2334.

79. Medori R, Jenich H, Autilio-Gambetti L, Gambetti L, Gambetti P. Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci 1988;8:1814-1821.

80. Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 1999;122:2109-2118.

81. Sima AAF, Bouchier M, Christensen H. Axonal atrophy in sensory nerves of the diabetic BB-Wistar rat, a possible early correlate of human diabetic neuropathy. Ann Neurol 1983;13:264-272.

82. Sima AAF, Yagihashi S. Central-peripheral distal axonopathy in the spontaneously diabetic BB- rat: Ultrastructural and morphometric findings. Diabetes Res Clin Prac 1986;1: 289-298.

83. Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans. J Neuropath Exp Neurol 1996;55:1181-1193.

84. Sima AAF. Diabetic Neuropathy. (Letter to the Editor). J Neuropath Exp Neurol 1997;56:458.

85. Brown AA, Xu T, Arroyo EJ, et al. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rat. J Neurosci Res 2001;65:1226-1277.

86. Sima AAF, Pierson CR. Diabetic neuropathy; a heterogeneous, dynamic and progressive disorder. J Neurosci Res 2001;66:1226-1227.

87. Yamamoto K, Merry A, Sima AAF. An orderly development of paranodal axoglial junctions and bracelets of Nageotte in the rat sural nerve. Dev Brain Res 1996;96:36-45.

88. Pedraza L, Huang JK, Colman DR. Organizing principles of the axoglial apparatus. Neuron 2001;30:335-344.

89. Davis JQ, Lambert S, Bennett V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (micin +/- third FN III domain) on NrCAM at nodal axon segments. J Cell Biol 1996;135:1355-1367.

90. Isom LL. The role of sodium channels in cell adhesion. Front Biosci 2002;7:12-23.

91. Malhotra JD, Koopman MC, Kazen-Gillespie KA, Fettman M, Hortsch M, Isom L. Structural requirements for interaction of sodium channel ßj subunits with ankyrin. J Biol Chem 2002;277:26,681-26,688.

92. Lustig H, Zanazzi G, Sakurai T, et al. Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 2001;11:1864-1869.

93. Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Ann Rev Biochem 1997;66:315-335.

94. Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal trans-duction and O-GlcNAc. Science 2001;291:2376-2378.

95. Sugimoto K, Murakawa Y, Zhang W-X, Xu G, Sima AAF. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes/Metab Res Rev 2000;16(5):354-363.

96. Einheber S, Zanazzi G, Ching W, et al. The axonal membrane Caspr, a homologue of neu-rorexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 1997;139:1495-1506.

97. Peles E, Nativ M, Lustig M, et al. Identification of a novel contactin associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 1997;16:978-988.

98. Sugimoto K, Murakawa Y, Sima AAF. Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. JPNS 2002;7:44-53.

99. Sima AAF, Kamiya H. Progressive diabetic sensory neuropathy is not apoptosis related. Peripheral Nervous System Society, Florence, Italy, 2005.

100. Yagihashi S, Kamijo M, Watanabe K. Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin diabetic rats. Am J Pathol 1990;136:1365-1373.

101. Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL. Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 1987;84: 3472-3476.

Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook

Post a comment